Automatic Concept Extraction in Semantic Summarization Process
نویسنده
چکیده
The Semantic Web offers a generic infrastructure for interchange, integration and creative reuse of structured data, which can help to cross some of the boundaries that Web 2.0 is facing. Currently, Web 2.0 offers poor query possibilities apart from searching by keywords or tags. There has been a great deal of interest in the development of semantic-based systems to facilitate knowledge representation and extraction and content integration [1], [2]. Semantic-based approach to retrieving relevant material can be useful to address issues like trying to determine the type or the quality of the information suggested from a personalized environment. In this context, standard keyword search has a very limited effectiveness. For example, it cannot filter for the type of information, the level of information or the quality of information.
منابع مشابه
Semantic Role Extraction and General Concept Understanding in Malayalam using Paninian Grammar
The collection of methods by which human languages convey meaning is called meaning structure of a language. It includes many conventional form-meaning associations, word-order regularities, tense systems, conjunctions and quantifiers, and a fundamental predicate-argument structure. In the Dravidian language, Malayalam, the Karaka theory, is useful for both the syntax analysis and semantic anal...
متن کاملEnhancing Biomedical Text Summarization Using Semantic Relation Extraction
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extra...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملSemantic Interpretation for the Biomedical Research Literature
Chapter Overview Natural language processing is increasingly used to support biomedical applications that manipulate information rather than documents. Examples include automatic summarization, question answering, and literature-based scientific discovery. Semantic processing is a method of automatic language analysis that identifies concepts and relationships to represent document content. The...
متن کاملHybrid Approach for Single Text Document Summarization Using Statistical and Sentiment Features
Summarization is a way to represent same information in concise way with equal sense. This can be categorized in two type Abstractive and Extractive type. Our work is focused around Extractive summarization. A generic approach to extractive summarization is to consider sentence as an entity, score each sentence based on some indicative features to ascertain the quality of sentence for inclusion...
متن کاملRefined Ontology Model for Content Anatomy and Topic Summarization
When the performance of any information processing system can be enhanced by the concept of ontologies, domain specific terms enclosing wealthy and defined semantics. Research has been accomplished with the help of variety of resources on automatic ontology construction. Each of these resources has different qualities that have need of special approaches to term and relationship extraction. On ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012